![线性代数简明教程](https://wfqqreader-1252317822.image.myqcloud.com/cover/562/24273562/b_24273562.jpg)
§1.1 n阶行列式定义
导学提纲
1.何谓2阶行列式?怎么计算2阶行列式的值?
2.二元一次方程组解的公式?
3.何谓3阶行列式?怎么计算3阶行列式的值?
4.三元一次方程组解的公式?
5.何谓元素aij的余子式M ij?何谓aij的代数余子式A ij?
6.何谓n阶行列式?
为便于记忆二元一次方程组解的公式,引入
定义1.1.1 记号
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0001.jpg?sign=1739285837-ttzFM2YFGi8HSWKlSFnQkd5FATxre8fc-0-872e67c0262268a1898012c3835fb1cf)
称为2阶行列式,它表示代数和a11a22-a12a21,即
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0002.jpg?sign=1739285837-EKiyK7ywgQxKKtDZZ6eYKLlCpO6PDjTe-0-04e6b2ab3ed2af6fb0eda51e163adf26)
2阶行列式中,横排称为行,竖排称为列.位于第i行第j列的元素ai j称为(i, j)元(i, j=1,2).a11, a22称为主对角线上的元素;a12, a21称为次对角线上的元素.2阶行列式的算法是:主对角线上的两个元素的乘积减去次对角线上两个元素的乘积.例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0003.jpg?sign=1739285837-Pg7FGvoYi9DXyMH0PQznobd6Ws0Hw7g2-0-71b0b9b37d290eeca2934b7e87f25a38)
定理1.1.1 二元一次方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0004.jpg?sign=1739285837-2GX7RF5YJO4H386yWYnQzsSHmwXiqkMB-0-4fdeb80b51d2f50012c35d95f27468f0)
当系数行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0005.jpg?sign=1739285837-mqLH41B9BxrnbyiAqHBdCiaR5Y93fnWc-0-6397aabe6f79b8ae2010772a25691d4e)
时,有唯一解:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0018_0006.jpg?sign=1739285837-fAW8X66aTQy5VGCmcChZyGkvcBKmQzUv-0-185414301ef40486a91b9a80b084df93)
证 ①×a22-②×a12得
(a11a22-a12a21)x1=b1a22-b2a12,
如果a11a22-a12a21≠0,那么
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0019_0001.jpg?sign=1739285837-6PN0SLw2zd2MqmIi4uXVebqWCnewF5tT-0-80a3153c123adb89af6d0fb7b4a1ff11)
②×a11-①×a21得
(a11a22-a12a21)x2=a11b2-a21b1,
如果a11a22-a12a21≠0,那么
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0019_0002.jpg?sign=1739285837-t0Xyj1C3dOmVG8pzgj1nBitBEtehXjT1-0-ec9b8e591d943d717a90dd5a30011ed1)
例1.1.1 解方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0019_0003.jpg?sign=1739285837-gLVhwrveBFBPb5oXSZWllAAbquBrIHR9-0-51c1f408ca08873a3f3b099bfe80e42d)
解 因为系数行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0019_0004.jpg?sign=1739285837-GkJrD5yOblywCD1SkXWC1Bvhp64bQA9q-0-8315b6778e5365edbffd8e215c162946)
所以有唯一解:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0019_0005.jpg?sign=1739285837-wEienWUx1oBSM7Y91oO4Tp8k1XIyTKgA-0-6317751c3029ad6152d974c235d03e87)
(读者可将解代入方程组验算之).
用加减消元法解三元一次方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0020_0001.jpg?sign=1739285837-BpNUYcwBSP7mzfsnPMoqIKIAS24kICZJ-0-29f403334b4d42526e8786771dcb6a77)
得
定理1.1.2 三元一次方程组(1),当系数行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0020_0002.jpg?sign=1739285837-VHZgyPMKeDhpk4ymlwcOtiaf3pTdQIqX-0-853b884df2b737c0a1fff7dd9289f107)
时,有唯一解:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0020_0003.jpg?sign=1739285837-zWsDifNs0Fqm5xzTg8XVBP7j2A3dCiQX-0-df93ae5a48ccce076ef097a19c0433d5)
为此引入
定义1.1.2 记号
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0020_0004.jpg?sign=1739285837-vWjEsYT8fCSHkx0g9NJa7NYtWoFwtaFS-0-5baed2062ffa3bcb7c92336962644f72)
称为3阶行列式.它表示代数和
a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31.
即
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0021_0001.jpg?sign=1739285837-h3X5SRvpnQLlKj6Mfus0zuOQ9q154JP6-0-0dd6e2f2ad63f9a03ae8dd3cdfe29941)
3阶行列式等于3! =6项代数和.每一项都是取自不同行不同列的3个元素相乘,主对角线方向三项前面带正号,次对角线方向三项前面带负号.3阶行列式算法如下图:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0021_0002.jpg?sign=1739285837-PNUM4kNEaBW7SR3uqlPX2PVUjLUr2hhV-0-214076889b3f4e09398451dd32a2e2cd)
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0021_0003.jpg?sign=1739285837-smkrH0umGptAZJYoNTyE6dpmMgTM2uKc-0-498ee4c9525c182b51eea27283720c79)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0022_0001.jpg?sign=1739285837-lR3Vh4nKjKKoHVTs24rmTHpYiviZxPTQ-0-76cf0574a1f0c4bf1a8f66b7799da417)
例1.1.2 解方程组
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0022_0002.jpg?sign=1739285837-VBftFCKcIfHB4fHE7sYKHx4brsZoYHRE-0-84e747311fd4a8b07bbba73b3388c742)
解 因为系数行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0022_0003.jpg?sign=1739285837-RMsJy6fMC2VjGDIwjXv16H5eVSivOaNg-0-228fcbdeee0373e2ce7a412dbfad95d8)
所以有唯一解:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0022_0004.jpg?sign=1739285837-mhRAUxc671OdjBrhR4rcpn1g4fnm17Mq-0-783ae20f418daed59c3d6789ac1305bc)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0023_0001.jpg?sign=1739285837-1JbZ4m9uRTVt6NJQvUK2TXPlzokZgIIQ-0-87037c4b82d5fdf8fe0e322e470edf98)
(读者可以将解代入方程组验算之).
例1.1.3 解方程
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0023_0002.jpg?sign=1739285837-1YYTyPyZ4Ibg3AJg6dqg9XGSvWQwOiGU-0-29594545ff628f59194b26a25c363c6b)
解 (1)左边=(λ-3)(λ+1)-5=λ2-2λ-8=(λ+2)(λ-4)=0,
所以方程有两个根:λ1=-2, λ2=4.
(2)左边=(λ+1)(λ-3)(λ-2)-(-1)×4×(λ-2)=(λ-2)(λ2-2λ+1)=(λ-2)(λ-1)2=0,
所以方程有根:λ1=2, λ2=1(2重).
定理1.1.1和定理1.1.2可以推广到n个方程n个未知量的一次方程组情形(见 §1.4).为此需要引入n阶行列式定义,先分析3阶行列式与2阶行列式的关系.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0023_0003.jpg?sign=1739285837-MdggKibXV2K8y0euDrE2rwkMBvyBfaMq-0-9a6a9605c0fbf4d843075b32d56ebc5c)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0024_0001.jpg?sign=1739285837-m1YuazZk8pjoEC1r8ZDHIUCuFkpATRGs-0-5e3684416600c9ba4567dc83c173b2b6)
定义1.1.3 行列式中元素aij的余子式Mij是指去掉aij所在第i行和第j列元素后余下的行列式.aij的代数余子式Aij=(-1)i+jMij.
例如,3阶行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0024_0002.jpg?sign=1739285837-dXzEQwzo5MWSd15xDImjElR8YQJFZdv7-0-8bed518b5f4444e87e32fbdc8d5761f5)
中,元素
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0024_0003.jpg?sign=1739285837-Zh9UDN7v58pGNcXFcUKwO4ieIt6a5ZIH-0-569e63b8c7a98e6e7f6564e183fec710)
所以3阶行列式还可以定义为
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0024_0004.jpg?sign=1739285837-pnvn21akdB6XN6FdAVmNw0PqNHpv2bAG-0-a009ac14a88f0efed5b787817042e262)
即3阶行列式的值等于第1行每个元素与其代数余子式乘积之和.
例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0025_0001.jpg?sign=1739285837-RHAGu54zOFoDMP0NkoUIh34q98oGkPWU-0-d0da5ff3048d9e85168b5704e73afb92)
现在我们归纳出n阶行列式定义.
定义1.1.4 n=2阶行列式已经定义(定义1.1.1),假设n-1阶行列式已经定义,那么n阶行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0026_0001.jpg?sign=1739285837-HzkBlyZQAIWC4D74esr4rbuvt2wsDUFw-0-a3af583e85ca74cfe93e92f416292968)
其中A1j=(-1)1+jM1j,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0026_0002.jpg?sign=1739285837-wR7XCoGNscEtx8rtBcvM26LX2de8wvyJ-0-4749e20d65c99cbe8a658e1be7a2fd80)
或简单记作|aij|nn.
例1.1.4 按定义计算下列行列式.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0026_0003.jpg?sign=1739285837-M8qHfhcv1vLw1HSJbJ3xek6vyESCu2qi-0-85911412bf434843eed6e1045642108f)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0027_0001.jpg?sign=1739285837-LPA5wtwplmmC3cmxdH4uQs1bghFgx2Gj-0-2885de2905a81e54f301c03912827614)
解
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0027_0002.jpg?sign=1739285837-o7PtgH66z7iycOS8vmO0tU3qJCfUsqfC-0-3caef7aadaa74460b8a271815e43a29a)
一般地,n阶下三角行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0027_0003.jpg?sign=1739285837-yTZyTPnjgMCtFvwavo8BAQ5xjbWzH1lS-0-a25679882e715571ba404c3cbf35f15e)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0028_0001.jpg?sign=1739285837-X2hzTOT4MgSwbNJqHj5M2j6IqsWQkmD8-0-4e0eb70ad0785513dfbecc5c606f49eb)
第(3)题答案说明4阶行列式中次对角线上4个元素的乘积前面带正号.
可见,对于n≥4阶行列式,2、3阶行列式的对角线算法已不适用!
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0028_0002.jpg?sign=1739285837-DVqKftKcjBJPgvSij3bGva9XsBl5b3Qg-0-196fa2c3416b1b98e565cc1ccb1596ea)
第(4)题可以作为公式用.例如,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0028_0003.jpg?sign=1739285837-OrVQdzaiCxq14xRSPMey5JDke2tMdxOp-0-6478a468a0dbe9d3e38e7ccc243a19a6)
一般地,设|A|=|aij|r, |B|=|bij|s,那么有公式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0028_0004.jpg?sign=1739285837-xtg1WpR6AdINzft1rCHmALg5rIRLQHRz-0-7820b716a4017f1deda741e96fc35bbd)
习题1.1
1.填空题:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0029_0001.jpg?sign=1739285837-gMY1ZMzO0kbK7jJvOVEZmStbS9JSE4LJ-0-a14a7fd0f32aece8fdc9ae318e8f99ac)
2.解方程:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0029_0002.jpg?sign=1739285837-iqYxozuHLv0XCFL0YUh2zCxmradFplZC-0-303ede3e199b658152dd0c8459eb724e)
3.解方程组:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0029_0003.jpg?sign=1739285837-BwYaNkZL65u46S4eO64GfaN42d7tEp3c-0-7539d0d3e98166ef4973c23d88b774d6)
4.按定义计算行列式:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0030_0001.jpg?sign=1739285837-QK20exKurhB9U9w8aYQAeLgBIEeDXihx-0-11a44db56e43e0712d886a82931cd36f)
5.按定义计算行列式:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0030_0002.jpg?sign=1739285837-cmnF9jtqXR28IfmxEWQWNPi4UQS9QAot-0-d489f26df6e1fb41cd1bbf04e2563c06)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0031_0001.jpg?sign=1739285837-eHYwYV4CB1UOtP7gLjNdT7lgQWzvcLgI-0-15bf7ce7d3bd492310daa3b0649f5aab)