![线性代数简明教程](https://wfqqreader-1252317822.image.myqcloud.com/cover/562/24273562/b_24273562.jpg)
上QQ阅读APP看书,第一时间看更新
§1.2 行列式按一行(列)展开公式
导学提纲
1.n阶行列式按第i(1≤i≤n)行展开公式是什么?
2.n阶行列式按第j(1≤j≤n)列展开公式是什么?
3.怎么用行列式按一行(列)展开公式计算行列式值?
定义1.1.4告诉我们,n阶行列式值等于第1行元素分别与其代数余子式乘积之和,实际上n阶行列式值等于任一行(列)元素分别与其代数余子式乘积之和.这就是
定理1.2.1 n阶行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0031_0002.jpg?sign=1739288165-SUWDgxVQJfuMCYtQ4GptkIVZIToBn1gB-0-b89f33cd55b91f7b2a1d8a25d000035a)
(证明略)
例如,计算行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0031_0003.jpg?sign=1739288165-0Dimo8HDOgCsGfCs0bjNfi0RT9Tn5DAt-0-22ea493d0d2e6fe6e00dced23bf918fb)
解法1 按定义1.1.4,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0032_0001.jpg?sign=1739288165-ZkolDFWjasoQDMhurxzPalWVASjlNxbH-0-cc9adc8e4b0eb0c491d08147c62901fb)
解法2 按第3行展开,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0032_0002.jpg?sign=1739288165-i3DX6pX9qNOfsj580nPB2bqfC2OUz3ik-0-54d45bdb9b4cbcca8345a9cf013670d9)
解法3 按第2列展开,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0032_0003.jpg?sign=1739288165-am6ZDyRXkvaQetP8TISONPMmZw3qhvQU-0-56c412d6b4f91663713dac1253fd0028)
例1.2.1 计算行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0032_0004.jpg?sign=1739288165-kDtDWkspj6RNRkclwLqkrywKj5Cf5DCW-0-46ab42209a888942b57d8d42acd98833)
分析 因为第2行元素都是字母,为便于数字计算,宜按第2行展开.
解
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0032_0005.jpg?sign=1739288165-yFizUo3wknA9Z7CCo7kfQdLOyNkIgRHn-0-9bffbd2d7a23864e369b814c5c36efb7)
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0033_0001.jpg?sign=1739288165-xkbu1oX0SH1qOExshKXmIQe62apzWb27-0-f3bcd4fbd25aa7e05b3e33546b5b72a1)
例1.2.2 计算行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0033_0002.jpg?sign=1739288165-y4a80UbHFEieyx5PxL5TW1ssRSnYhjme-0-a0b191e256888e4dbbb3f0d178304824)
分析 因为第3列含“0”最多,所以按第3列展开,这样可以省去两个“0”的代数余子式计算.
解 按第3列展开,
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0033_0003.jpg?sign=1739288165-g4OCZXUsGsG8rIz7YJe5lUlcI99fDy6P-0-ce64131b591eaa08ee7d224753147af5)
例1.2.3 计算上三角行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0033_0004.jpg?sign=1739288165-ie7mT2wmclfWr2sOZE0MEi0VDNLz0hYq-0-59a1b29fb8e51638d9f71f1cd12e8a54)
分析 因为第1列“0”最多,故按第1列展开.
解
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0033_0005.jpg?sign=1739288165-1EkFABZD2smaIJp8sHY1AO6UjQHfIVTU-0-506c83f95eb8cfc1c56ed6433f83e55a)
一般地,n阶上三角行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0034_0001.jpg?sign=1739288165-DODA8HyAuRJNIQbnuIn07jhtsy1ch9j8-0-15a470c557feaff8078221a949c2da0b)
例1.2.4 计算行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0034_0002.jpg?sign=1739288165-1TuaJPiIQcao7dE3va6IuclxkFQoyeNV-0-0b6819a724e73c91a179ea881c198de9)
解 按第5行展开.
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0034_0003.jpg?sign=1739288165-xq7OGYFldb9K0Kf4NIgrTL74ymkcNKTd-0-7375c48d7197dc82c093749e09c3af24)
(读者不妨按第1列展开计算之).
一般地,n阶行列式
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0034_0004.jpg?sign=1739288165-kWq03TyBrt08Pn0qfCzBVi3iVgqvTJpH-0-622106095e42d0623d7d653527b410a1)
习题1.2
1.用行列式按一行(列)展开公式计算下列各行列式值:
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0035_0001.jpg?sign=1739288165-Pzg3qu0dlyrZhs3vv7RLgBQVi9e4QDFh-0-de0478e740d51d5031d104b56a81471f)
2.证明
![](https://epubservercos.yuewen.com/DE0608/13173345505467906/epubprivate/OEBPS/Images/figure_0035_0002.jpg?sign=1739288165-TLjxtIPgQC8LW0OT3LXQzsnG5hlkjrjO-0-2ce929b5bfa859b4860ed509a7723122)