![信息流推荐算法](https://wfqqreader-1252317822.image.myqcloud.com/cover/888/51709888/b_51709888.jpg)
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/3_01.jpg?sign=1739541965-Y9y3RJCXexqrG0rsYRbhirC1gyWcUDmX-0-2d9313ca5b5a3efb0bcc1c7801ce0900)
图3-14 Item2vec和SVD的可视化效果对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/3_02.jpg?sign=1739541965-ChVYO9i18Y7Z271J2XWsGWhwYtBSgBLM-0-a9eb45b932657e373385587683d66b6c)
图3-16 视频观看倾向与发布时间对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/4_01.jpg?sign=1739541965-hX5RwSVIA2JOoy7xncToA6BqzGWorrEZ-0-36b8f4559d983b742d7d669c1d8065bd)
图3-30 Node2vec效果可视化
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/4_02.jpg?sign=1739541965-XEMO5xgYRpASZRb3ZV98fobcTSVeuuQI-0-702309ff6ac1553e89dc0c33b88978ff)
图3-37 DIEN模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/5_01.jpg?sign=1739541965-GWDJ4DhFQvsrEfx4PYZ4U2M9qEEGH3CX-0-e2debc4f56c60421727efe396991eda5)
图4-2 不同α系数的衰减速度对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/5_02.jpg?sign=1739541965-SpmNt9txbNnV8WeFaszd7mDG6RqzZ7sc-0-8cda86c026acfd42523a37f87a2be399)
图4-20 PRAUC与Hit Rate在粗排中的区别
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/6_01.jpg?sign=1739541965-Js6SvTyXkDSKCnCIRGrD8uTivzKt8Vk8-0-17b4a8996de7f8210871154f8d59c3e4)
图5-15 不同正则化方式的训练和测试误差
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/6_02.jpg?sign=1739541965-IbQKaulFWqmO22E52zXcUPkUQN8hNx7L-0-4dd99c31f8a75eb9d9331fd0673a3d6b)
图5-16 DIEN算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/7_01.jpg?sign=1739541965-hTUyYpyJ22yx4TPbJxufA2ZJxZOIVxoi-0-c53c23c534113e69abfd4baa5b2d5dfc)
图5-18 DSIN算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/8_01.jpg?sign=1739541965-TvKROw9MZbIIcyJjt1Pgr6hDwzUU6CKA-0-c545cf8bdf2291bc9e3ceae76dbe61d7)
图5-20 工业级展示广告系统的实时点击率预测系统
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/8_02.jpg?sign=1739541965-md09Lq3s3RHmLTlAQaEx9X4IlBhBT0hR-0-f712c91cb8ac2e71c202b14a3ac1830a)
图6-3 高斯过程拟合函数的示例
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/8_03.jpg?sign=1739541965-TY7YqT5Chl9PpzCosAdQXWlAa9p40jT4-0-e5025f02777840aaab68a8ab3a5d9a9b)
图6-7 (1+1)-ES和(μ+λ)-ES的对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/9_01.jpg?sign=1739541965-Sgz0qDQkCC2Ard1okUawCjJQmPfUfxX5-0-1390814a1eb1ccc6e59d97ab239aeff1)
图6-8 OpenAI ES优化的示例一
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/9_02.jpg?sign=1739541965-FMXbSaRSXPUUnCsAeVZFB8yxeKv8TjxO-0-587ba1bdad5a346d187829399b978c33)
图6-9 OpenAI ES优化的示例二
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/10_01.jpg?sign=1739541965-ucYjosMOx2gQXHEwXjfz50kXXw0YCNxF-0-afcd6dd37d0130b746c54ecc96383e10)
图6-16 多个强化学习方法在4种类型上的动作分布
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/11_01.jpg?sign=1739541965-8ERhC75hyjBx6qDUNFYkb8AywQsecYEA-0-2e8c30240e2aeb77318bd03a27c172e0)
图7-3 DLCM在不同相关文档上的优化效果
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/11_02.jpg?sign=1739541965-E1BL9ADn4gwb7FqYImrNxQPr2lv2e4PS-0-accc0efbea6103a2bd105463cfe63ebc)
图7-8 Seq2Slate的计算流程
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/12_01.jpg?sign=1739541965-m4xF4vmYuRVP0Lu0cc6xowgn2OYiTL0a-0-5acaf02b71328382da1e689581730646)
图7-10 GRN中的Evaluator模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/12_02.jpg?sign=1739541965-iF1OkC6TNUYrFiIChaAwlFWoTE2uw8SK-0-fb1cbbfa6e606421125252b554a8cdb9)
图7-11 GRN中的Generator模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/13_01.jpg?sign=1739541965-tHpM2d08i0bHE3Vyoy7WAVMFU0Lm2Sma-0-cf86902c0c7f21974c19a0ee7e69460f)
图7-14 电商场景中的案例对比:list-wise模型与Permutation-wise模型
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/13_02.jpg?sign=1739541965-70uEqW0NCks9VaArIgRhKPv8lN62bwI0-0-af2bcb8af0cd257820fbea8a2f4e4912)
图7-16 PRS框架的整体结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/14_01.jpg?sign=1739541965-efWsUZrzxB4vrHfZxDdVAOiZdFUG62AZ-0-0d3fc17205ae1b017597e2598e058d6d)
图7-17 基于Beam Search的序列生成方法
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/14_02.jpg?sign=1739541965-ZdcXecMfH0nKZaVjwjlkTaaShopU31dd-0-842f4167865e33eab82de77512ca8a7d)
图7-18 DPWN的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/15_01.jpg?sign=1739541965-K76TJfIYu4Mk3SG09pYxucVtSNn3hBUe-0-3f87879c53d1816b4167e75c1bcb6450)
图7-19 流行的端云协同瀑布流推荐系统框架
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/15_02.jpg?sign=1739541965-0UlxFFuhR6WoRvaLTFpstXlnAFdzVdZ3-0-b595267f8998f5e0f6288d67d43e2ae6)
图7-22 EdgeRec中的异构用户行为序列建模和上下文感知重排的行为注意力网络
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/16_01.jpg?sign=1739541965-BKe1bVziKQtueTEe8zVkeUEUd2xB98py-0-36072a0e2fdba96490be90e2de61e621)
图7-24 减少模型参数空间的MetaPatch方法
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/16_02.jpg?sign=1739541965-BdUnDGunOnolzQWObXgVBG4VZewvMm3J-0-8838af81c35d77fbffe1411f89922494)
图7-25 增强云端模型的MoMoDistill方法
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/16_03.jpg?sign=1739541965-TpNvlA4OOEKO5Q4UeoFlT96MMq0TJQ4c-0-dbb4c7be75584ae236f5ffd898c4fe3d)
图7-26 DCCL-e和DIN在所有细分用户群上的推荐效果对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/17_01.jpg?sign=1739541965-4zsVFZfYQuW3tGuvTReDKuBBBBpsHirV-0-0ba5639a8cdc3562172fa5d659287aa9)
图8-3 负采样校准前后的概率密度对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/17_02.jpg?sign=1739541965-xjPZTt55eHNTJpLEKbBbd9hxwFbJ80it-0-a1d98178cec7976e800b4e11546a3d35)
图9-2 DropoutNet的相关实验结果
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/18_01.jpg?sign=1739541965-1PLyDg7Par5ouJX17827A6fSsPwMHYWa-0-706e660cb1d00ce55e58429995910f45)
图9-5 MWUF算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/18_02.jpg?sign=1739541965-BwUCkNMQex0tsESEb5ZJXFXRmv1miaf7-0-3253cc6b41f0c29f7eea1c124b52df7d)
图9-7 Cold & Warm算法的模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/19_01.jpg?sign=1739541965-N4Fuuo5ZieDd9SH4brvvOCVGTLPBifho-0-769126cf10a306fc781f2b643ec1ee3d)
图9-9 冷启动和非冷启动任务的效果变化趋势
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/19_02.jpg?sign=1739541965-e8qHvFqgjIBhONM3gcJz0qd5cey0ZLqU-0-444db36aef05da8701520ed9fc48e76b)
图9-11 数据偏置的说明和它对于模型训练的负向影响
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/19_03.jpg?sign=1739541965-IuYjybbJjFTIx7y3fAgELMdH6m55HG2N-0-50d687eb7f7334c257786abca49e1d11)
图9-17 CIKM Cup 2016数据集的相关分析
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/20_01.jpg?sign=1739541965-kZlEF0ah6yaCaCgRcs1UA0hCzmDwbLK8-0-946fc8a1a87ab7ab9b63bfe0fbb4c9f4)
图9-19 属性间的相关性在源领域和目标领域是一致的
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/20_02.jpg?sign=1739541965-5D0JOcRSCcJAheprt6k7cwmlqo7Q1Dwy-0-e75c0df1cd7128f9d921bca1fbc1ff57)
图9-20 ESAM算法中多个损失的设计意图
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/21_01.jpg?sign=1739541965-yRqiDi9vT4iJJybZRsZjvQxDxUooZIuH-0-ce53a687285d41d99ce11784c717da83)
图9-21 T-SNE对数据特征分布的可视化,红色和蓝色分别表示源领域和目标领域
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/21_02.jpg?sign=1739541965-HUqiLMAX4TLV50uPIwZuxjf3RNSLbtJI-0-89e64588044475208e858ba9d145cc78)
图9-22 真实数据上的相关性得分分布对比
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/22_01.jpg?sign=1739541965-iGYVdI4r3CGZwGGT8RG84gzxqp5wYlG0-0-ff8c36107508072cb3cd3b81a121a5cc)
图9-23 解决协同过滤中长尾问题的对抗网络模型结构
![](https://epubservercos.yuewen.com/E66CEB/30516069004970706/epubprivate/OEBPS/Images/22_02.jpg?sign=1739541965-tvIHPS5hdKRRU7CPvCmT6mrg1ztBlkML-0-3f510d34bae40d2a6a4e878637b4d5ec)
图10-6 层与桶的流量关系