自动控制理论与应用实验指导
上QQ阅读APP看书,第一时间看更新

第2章 二阶系统数学建模实验
Chapter 2 Mathematical Modeling Experiments for Second-order System

系统的数学建模是对被控对象经过数学抽象后,建立公式类模型,即用数学语言来描述一个系统的行为。对于实际的机械、化工、航天等系统,获得一个切合实际的数学模型是分析系统、设计合理控制系统的关键。建立数学模型的方法多种多样,主要是根据被控对象内部存在的物理定律来建立数学模型,例如可以依据以下的系统原理进行数学建模:1)机械系统原理;2)电学原理;3)流体力学原理;4)热力学原理;5)化学原理;6)空气动力学原理等。

Mathematical modeling is to use mathematical language to describe the behavior of a system. It is a process to get a formula from the real mechanics system,chemical system,aerospace system,etc. . It is the key step to design and analysis a control system. There are a lot of ways to model a system,and mostly will be done according to physical law. For example,we can build mathematical model according to the physical laws of the process as following:1)Mechanical system principle;2)Electrical system principle;3)Fluid system principle;4)Thermo dynamic system principle;5)Chemical system principle;6)Aerodynamics,etc.

在已经知道了系统的基本机理后,传统的方法可以依据下列步骤建立系统的数学模型:

If the principal of system has been known,the modeling of dynamic system will be done as following steps:

1)对系统以及各个部件进行定义;

1)Define the system and its components.

2)列写合理的假设条件之后建立数学公式;

2)Formulate the mathematical model after listing the necessary assumptions.

3)用微分方程来描述模型;

3)Write differential equations describing the model.

4)解微分方程以获得期望的输出;

4)Solve the equations for the desired output variables.

5)检验解与假设条件的正确性;

5)Examine the solutions and the assumptions.

6)分析结果,如模型不合要求则重新设计系统。

6)If necessary,reanalyze or redesign the system.