![有限元仿真及在电连接技术中的应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/21/33893021/b_33893021.jpg)
上QQ阅读APP看书,第一时间看更新
2.2 功与能
在弹性力学分析静力问题时,加载过程永远是逐加、缓加过程。在这一过程中,所有外加载荷都是由零逐渐加到它的额定值,由其引起的位移和应变也是由零逐渐达到它的额定值的。对于线弹性体,外力(内力)与其作用点的位移之间的关系,以及其应力与应变之间的关系都是线性关系(见图2-6)。
1. 实功
图2-6a中,力Pk在其作用方向上直接引起的位移上所作的功叫作实功。对于线弹性体,Pk与
呈图2-6b所示的线性关系,实功的计算公式为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/46_04.jpg?sign=1738844134-7qCA8rK0eDoclAMitRhSdzCmFPf12VFU-0-d3094f35abc97723d96299b789022964)
2. 虚功
如图2-7所示,力Pk在别的原因(如Pm)引起的位移上所做的功叫做虚功。其计算公式为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/46_06.jpg?sign=1738844134-NxLIPSfGRH9ypEeXsMQREAEMol0BWY5i-0-d4168bde323d697aad48ee293bab69a2)
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/46_07.jpg?sign=1738844134-nbozjOn1xGcYVG96wcF0MdDctawjrE0L-0-0baeee93476f0f50869b12f1a3e6cbef)
图2-6 外力作实功
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/46_08.jpg?sign=1738844134-0w9Srova4rxXxzgVnMc31VgBDyOOCi0v-0-ed7f18494c00253f8c137b419c25ff9b)
图2-7 力作虚功
3. 应变能
应变能由内力(或应力)所做的实功来计算。对于一般弹性体,应变能以应力、应变表示,其形式和简单拉伸一样。弹性能密度为
一维:
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/47_01.jpg?sign=1738844134-JOMA7Ym3KJpofVdMsHUcJ0CEJwqoxU98-0-2926af675c1d55e4f722cbecd3160af3)
二维:
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/47_02.jpg?sign=1738844134-Wz4kwUCSPiQRQmMgeXVn4n2HmgQadKzC-0-f7ee104f8ac257fa18f81bf55f3ba48a)
三维:
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/47_03.jpg?sign=1738844134-ggV0zMAOV4bvmB0gFkWvSfSP8l0dTcgk-0-d4eb3623e93c7f563062c8ec216f1d0b)
以矩阵形式表示为
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/47_04.jpg?sign=1738844134-HcfCGS19BuUcQBPeSqh77vR4Wdf6hRsI-0-e771bf825d2a979cc68172d89ca64776)
应变能:
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/47_05.jpg?sign=1738844134-YSw8SFr5pU1kORiLgGdS5pis67pa3hjO-0-7fc4301aa2c1ec8a4e360f8edaf31e80)
将式(2-10)代入式(2-17)得
![](https://epubservercos.yuewen.com/67DFA0/18123626301964706/epubprivate/OEBPS/Images/47_06.jpg?sign=1738844134-mdt3lSvCrVx1Rt4AiRKOXrDGjCbJiGYY-0-63ce534211b7fdccec251426110572b1)