![邢其毅《基础有机化学》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/809/27031809/b_27031809.jpg)
第14章 羧酸衍生物 酰基碳上的亲核取代反应
14.1 复习笔记
一、羧酸衍生物的结构
羧基中的羟基被-X,,—OR,—NH2(或—NHR、—NR2)置换后产生羧酸衍生物,包括酰卤(acylhalide)、酸酐(acid anhydride)、酯(ester)、酰胺(amide)。
1.酰胺中的C—N键较胺中的C—N键短,主要因为:
(1)酰胺与胺中C—N键的碳分别采用是sp2与sp3杂化轨道与氮成键,前者杂化轨道中的s成分比后者多;
(2)羰基与氨基的氮共轭,从而使C—N键具有某些双键的性质。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image007.jpg?sign=1738907819-zFcQKdWShoVukLBaWSeNSrhXnUiDwd41-0-7e796fda978259a6619e1010a897c857)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image009.jpg?sign=1738907819-P4n3i8Y9HeV8Z20PvvobfY8yJLALEg4w-0-bcc18fed0eefccf7b487d2904e43f726)
2.由于共轭作用,酯基中的C—O键也比醇中的C—O键短。
3.酰氯中C—Cl键比氯代烷中的C—Cl键长,这是因为氯在酰氯中的吸电子诱导效应远远强于与羰基的共轭效应。
4.这种具有相反电荷的偶极结构在羧酸衍生物中的重要性:酰胺>酯>酰氯。
二、羧酸衍生物的物理性质
1.低级酰氯与酸酐是有刺鼻气味的液体,高级的为固体;酰氯与酸酐不溶于水,低级的遇水分解。
2.低级酯具有芳香的气味,存在于水果中,可用作香料;十四碳酸以下的甲酯、乙酯均为液体,酯在水中溶解度很小。
3.酰胺除甲酰胺外,均是固体,脂肪族的 N-取代酰胺常为液体,低级的酰胺可溶于水。
酸酐与酰胺的沸点比相应的羧酸高,酰氯和酯的沸点比相应的羧酸低。
这些羧酸衍生物都可溶于有机溶剂,而乙酸乙酯是很好的有机溶剂,大量用于油漆。
三、羧酸衍生物的反应
1.酰基碳上的亲核取代反应
(1)酰基碳上的一个基团被亲核试剂所取代:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image011.jpg?sign=1738907819-CvEgOChXQLar9KYn64D6E2wzZkOATqeh-0-a0660f26f3e4812b02c0661fbde3276d)
①碱催化的反应机理:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image013.jpg?sign=1738907819-eH7hLpjjC7h4mIQeteLO390eHUVwoX3G-0-81a547d2830744a6ae673695db95305d)
四面体中间体
反应分为两步:
a.羰基碳上亲核加成,形成一个带负电荷的四面体中间体(tetrahedral intermediate)。
b.消除一个负离子。消除反应决定于离去基团的性质,越易离去的基团,反应越易发生。
在羧酸衍生物中,基团离去能力的次序是:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image015.png?sign=1738907819-8jpmfmkV7ACETOAoMk6O52wnhzXSKok8-0-b4e77650653720be2513a4684c4a39d7)
②酸催化的反应机理:
a.羰基氧的质子化(protonation)。酸的作用就是通过羰基氧的质子化,使氧带有正电荷,从而吸引羰基碳上的电子,使碳更具正电性。
b.亲核试剂对活化的羰基进行亲核加成,得到四面体中间体。
c.发生消除反应生成产物。
③羧酸衍生物亲核取代的反应性顺序:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image019.jpg?sign=1738907819-HawbSeLu0KFOcdNj4isPqts5HFogiiQg-0-ff89fae87aefa05e2dda4f81daa7a0b6)
(2)羧酸衍生物的水解——形成羧酸
①酰卤的水解
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image021.jpg?sign=1738907819-yW6Z09juJ0iVuF0qMtuoMP1Nd4mRtboG-0-6232583d3b49935c9406b38d8cd407da)
水解速率很快;分子量过大时,因在水中溶解度较小,故反应速率很慢。酰卤由羧酸合成,因此水解反应用处很少。
②酸酐的水解
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image023.jpg?sign=1738907819-WSVuAQYqzfVe5dwuOaybRKQdeo4FrVCF-0-249b27cb2c2c2cf001bc155f65036022)
选择合适的溶剂使酸酐溶于水成均相,或加热使成均相,水解易进行。
③酰胺的水解
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image025.jpg?sign=1738907819-gNDHWIh4hbJzaVAcHVs2UjsAkfNbdVKg-0-d5795cb31d6e44eb941e090d4f21fdee)
酰胺在酸或碱催化下可以水解为酸和氨(或胺);
需要强酸或强碱以及比较长时间的加热回流:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image027.jpg?sign=1738907819-IJG7DNt8ZKjLyHkxS8dh4x1siUk8blqM-0-6510f06a66cea5e86c90cf22fab9166e)
a.酸催化时,使酰胺的羰基质子化,中和平衡体系中产生的氨或胺,使平衡向水解方向移动。
b.碱催化时OH-进攻羰基碳,同时将形成的羧酸中和成盐。
c.可用于鉴定酰胺:通过酰胺水解,根据所得羧酸及氨(或胺),来判断酰胺的结构。
d.有些酰胺有空间位阻,较难水解,可用亚硝酸处理。
④腈的水解
腈在酸或碱作用下加热,可水解为羧酸;
控制反应条件,腈水解为酰胺:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image031.jpg?sign=1738907819-NDWhrHlSR2W1jbTXGRTfoxdGLT9NLmNK-0-d812fb0f1dc4406c2822df23247173b8)
⑤酯的水解
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image033.jpg?sign=1738907819-4haSWyK7ejqKdW93qgtFhfLUw9KBVDkA-0-c936319d268132b234df0b36e2381738)
该反应为酯化反应的逆反应,常用碱作催化剂。
⑥酯水解的反应机理
a.碱性水解
CH3COOC2H5+NaOHCH3COONa+C2H5OH
机理为亲核加成一消除(nucleophilic addition-elimination mechanism):
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image037.jpg?sign=1738907819-Het93MpAMBrRTATYpcBuCWutf10jt1R8-0-00ea66eb8a62b3cdfe426e4333279ea3)
OH-先进攻酯羰基碳发生亲核加成,形成四面体中间体;然后消除OR′。这两步反应均是可逆的,在四面体中间体上消除OH-,得回原来的酯;消除-OR’,可以得羧酸。在碱性条件下,生成的羧酸和碱发生中和反应,从而移动了平衡。
酯在碱性水解时,发生了酰氧键(acyl-oxygen bond)断裂。
酯的碱性水解是按四面体中间体机理进行的。
羧基的α碳上存在吸电子基团或羰基附近空间位阻小,都使反应速率加快。
b.酯的酸性水解
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image039.jpg?sign=1738907819-V2o2XJctZELQAVthYkhyZOOq1GgYgzk7-0-2734f8b38496ae42f77b79bf23c0d8b6)
酸催化水解是酰氧键断裂:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image041.jpg?sign=1738907819-UV8hx69JPbpwRXm09NGeJ0S7vYKl3FOP-0-b32ab89dad6ef85245239060d5c9bddb)
在酸水解反应中,极性基团对水解速率的影响不如在碱水解中大;空间位阻影响酯的水解,基团的空阻越大.反应速率越慢。
上述的酸催化酰氧键断裂机理适用于1°醇酯和2°醇酯的酸性水解。
c.3°醇酯的酸性水解机理
按烷氧键(alkyl—oxygen bond)断裂的机理进行的:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image043.jpg?sign=1738907819-KBR6DvQUesDmJkKx1ZV0ybbKB4vOZX2L-0-79b55106d72401c5632cb5fbe02ec029)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image045.jpg?sign=1738907819-BzQzDU3eEuxGzo7idIgA6pHVurRoOJbx-0-562d18fb1d347e20e26245bcd65376b9)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image047.jpg?sign=1738907819-52V83J8EomKQsBJIyiUKCtVQBA6bxml7-0-20fe357bcbb95668071f6750c7af1b36)
这是一个SN1过程,中间首先形成碳正离子而放出羧酸,碳正离子再与水结合成醇。
可根据酯的水解反应产物分析酯的结构。
羧酸衍生物的水解活性次序是:酰氯>酸酐>酯>酰胺
(3)羧酸衍生物的醇解——形成酯
①酰卤的醇解
用羧酸经过酰氯再与醇反应成酯;
对于三级醇或酚,在氢氧化钠或三级胺如吡啶、三乙胺、二甲苯胺等存在下反应,碱的功能是中和产生的酸。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image049.jpg?sign=1738907819-VCHJL4YlWWgYbRxopSj6VSozfu1podd3-0-e246771178434e92fa14d25313fb7d98)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image051.jpg?sign=1738907819-SXJDg3yis1cglqWx095yTIoBVtNeoPBh-0-e4668c0d063cf51f777ad854d277317e)
②酸酐的醇解
a.酸酐醇解产生一分子酯和一分子酸,是常用的酰化试剂(acylation agent)。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image053.jpg?sign=1738907819-Mu4Uc01e2ecKcFcMIP3Shbnux60hdT2s-0-6e1d63537c3792ddab6daa09088fb393)
b.环状酸酐(cyclic acid anhydride)醇解,可以得到分子内具有酯基的酸,用酸催化才能进行:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image055.jpg?sign=1738907819-xCVyV3yh9lIvcuMOoUeFzP130TUGjDoe-0-2af8d77a06a54b2dfde3caa6ec4060ed)
③酯的醇解
酯中的OR′被另一个醇的OR′′置换,称为酯的醇解;
反应需在酸(盐酸、硫酸或对甲苯磺酸等)或碱(烷氧负离子)催化下进行:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image057.jpg?sign=1738907819-jXlWT2TiI2LuO54q9DmpaEePw8e6q5Eg-0-b9ea5dc2215f15103e4f5c1fde2b7f7f)
也称为酯交换反应(ester exchange)。
a.将一种低沸点醇的酯转为一种高沸点醇的酯:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image059.jpg?sign=1738907819-F0lopykrtib2iHjK2VXGeLA62dG9bK5B-0-72f2f447fcd3cd3ad113cc22fd63af17)
b.二酯化合物的选择性水解:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image061.jpg?sign=1738907819-IOKpaoqWTOgHzzpUT7LsAJxFPV9myKTi-0-9ce6df567c27a1cb350cbea78e981914)
c.合成涤纶:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image063.jpg?sign=1738907819-GGpaID55gb9ZX2srJnb0juBKxNSbKacF-0-d53c08c74d654f9bce51160184f23d92)
④酰胺的醇解
酰胺在酸性条件下醇解为酯,或用少量醇钠在碱性条件下催化醇解。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image065.jpg?sign=1738907819-kFqbVXlqCEYSOSreqh8bLMGrMjkLsKf3-0-e9f546431b7c85ece1ee9f229fc17325)
⑤腈的醇解
腈在酸性条件下(如盐酸、硫酸)用醇处理,也可得到羧酸酯:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image067.jpg?sign=1738907819-E1odxpu83dZQA8LJpYigcGz82aXtJxTV-0-a8718de1debf1f15a63f891d60a53a34)
(4)羧酸衍生物的氨(胺)解——形成酰胺
①酰卤的氨(胺)解
酰氯很容易与氨、一级胺或二级胺反应形成酰胺:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image069.jpg?sign=1738907819-KXsQXY3Dsh3oyD9dkOG9ZUjgLuoWIOg9-0-4629be8d2edd17cbe2c7a56998c23670)
酰氯与胺反应通常在碱性条件下进行,常用的碱有氢氧化钠、吡啶、三乙胺、N,N—二甲苯胺等;
酰化(acylation)反应最常用的酰化试剂是苯甲酰氯与乙酰氯;
对于芳香酰氯与α碳上有位阻的脂肪酰氯,可以在NaOH的水溶液中进行反应。
②酸酐的氨(胺)解
常用的酸酐是乙酸酐,与乙酰氯相比,乙酸酐不易水解。
a.对于易溶于水的反应物,氨(胺)解可以在水中进行:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image071.jpg?sign=1738907819-JRCKcePNCPIOrAGYZpd4bUOYhN6jryM9-0-fafd5110bcc454099c0c3fc71df499f9)
b.环状酸酐与氨反应,开环得到酰胺酸(amic acid):
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image073.jpg?sign=1738907819-R63Q4CwXaYCjdNMe19DJhhFVkIfr1wVE-0-3db8bdd41c52cbd8b3c55b076a2d00c7)
c.在高温下进行,产物是酰亚胺(imide)。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image075.jpg?sign=1738907819-emvmhYlva2e3DSew7a2rwpKzmRrhzm1X-0-918964b04e88cf74a02bdaee15575679)
d.酸酐与胺反应
主要用于各种胺特别是芳香一级胺或二级胺的乙酰化;反应可以在中性条件下或在小量酸或碱催化下进行。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image079.jpg?sign=1738907819-6pb8qP7IJngsWWtERRv7rEJY2S7XEdKh-0-79ad8bec9ced5b6db24a42b77a15b2bb)
③酯的氨(胺)解
酯可以与氨或胺反应形成酰胺。它们作为亲核试剂,进攻酯羰基碳。
肼和羟氨等胺的衍生物能与酯发生反应:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image081.jpg?sign=1738907819-apLxxEOVnUU7XQomn1ZrH4nnrGrbzDSl-0-3030a8185b6186d30b965099619ed0f8)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image083.jpg?sign=1738907819-ElbNUxFRR4WaEX755ZSGjyy00EyZK1YJ-0-1fb72311379be9d44519321b6b10bd0a)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image085.jpg?sign=1738907819-0PIrg4z81LFahoWDKDrs6tQjA5OfvrW7-0-b9d685dfc41f99f81197c1587cd723d0)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image087.jpg?sign=1738907819-AJ59TAby3ZeGr8MzyZve7ugw6Xq70AAH-0-a9494d8f854f9a8fd02f437f317439a4)
④酰胺的氨(胺)解
酰胺与氨(胺)反应,可以生成一个新的酰胺和一个新的胺:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image089.jpg?sign=1738907819-dSn9XuHS9BgKfxAhyoAoGQRsW3hjbYnV-0-1eb183ee30bfa6b364d7cf64a34e549d)
2.羧酸衍生物与有机金属化合物的反应
(1)反应历程:
(2)酰卤与有机金属化合物反应
①与格氏试剂、有机锂化合物反应
主要得三级醇,酮的产率很低,若用2mol以上的格氏试剂,主要产物为三级醇:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image095.jpg?sign=1738907819-D1CwDhaHVRWHiHrJ1fUoMgo84rmXh72v-0-665041174be39d94bdcf3956fc4565dc)
a.低温抑制格氏试剂与酮的反应,通过控制格氏试剂的量,可得酮:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image099.jpg?sign=1738907819-AjbKO5R0zOf8wSPzKZMmUrc0RynUde5v-0-abbdc22f4c24ed3faaf9636f4b510452)
b.有空间位阻的反应物得到酮,产率很高
②与有机镉化合物反应
易与酰氯反应,与酮反应很慢。合成酮酯(ketonic ester),可以在分子中接长碳链并保存反应性活泼的酯基:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image101.jpg?sign=1738907819-VBw2mCpQNJSa0CeCyXYGXgJ2T6wKkHOx-0-17bc5a8a4fb7859f8f873d31a018ea4a)
注:有机镉试剂毒性很大。
③与二烷基铜锂反应
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image103.jpg?sign=1738907819-aFnejqFLxGIcOLruhKhzkwWRsdEFtNGV-0-19cdae7a584525049aba15abea91d3da)
该试剂常用于从酰氯合成酮,产率很高。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image105.jpg?sign=1738907819-jB0TemrGQgB3fjKoUK36Fm8Mn14Hn2oJ-0-a47a2e8a502f9dced84e4ac184135af9)
(3)酯与有机金属化合物的反应
酯与格氏试剂反应得醇,反应消耗两倍摩尔量的格氏试剂;
对于有空间位阻的酯(α氢被取代),反应能停留在酮的阶段:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image107.jpg?sign=1738907819-vTwD9ntKaNNjXLw22A1xTWciMbpO68kv-0-c749b5532cd4b0a4c6884dd801265d5f)
(4)其它羧酸衍生物与有机金属化合物的反应
①二元酸的酸酐与格氏试剂反应用来制备酮酸(ketonic acid):
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image109.jpg?sign=1738907819-HdNZQltcUmMqZkddtkvCagPHuP6mxfFJ-0-931eeb8bbdb90a816a224b01e6c3f679)
②腈与有机金属化合物反应生成酮
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image111.jpg?sign=1738907819-hby458tLMDujtaOdpbYNewpVN7D2CuSN-0-b1d2e9e377d553de825ce17dc221e39e)
3.羧酸衍生物的还原
(1)用催化氢化法还原
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image113.jpg?sign=1738907819-DYVUGzD3vAeRU0z13a88KCLFNdHwCHcH-0-eb59f180960c78f747c96021f22a5119)
①酯可以被催化氢解为两分子醇:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image115.jpg?sign=1738907819-B06ortQKd6GC83SzZvbhSB7URbtIaEKU-0-2ab493840518c7568f29726d98e7e520)
应用于催化氢解植物油和脂肪(fat),以取得长链醇类。
②苯基在催化氢解过程中保持不变:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image117.jpg?sign=1738907819-0uZt1Bc669E1Dy3IP27fCqH3fzqrrQ9m-0-2f9212e6c29ba00b9653f3d6d95c4635)
③酰胺还原需用特殊的催化剂并在高温高压下进行:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image119.jpg?sign=1738907819-iYzcpUpMlosvYTQJQoxYXUz5j0gfeuIc-0-952bed8788a086bfeafae6e31675193f)
④腈用催化氢化法还原成一级胺:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image121.jpg?sign=1738907819-QOO9HUPapfpktb3OdWYOHcSQdLHQMMgq-0-2b46bceb92ef03376763d37764c53561)
(2)用金属氢化物还原
常用的金属氢化物(metal hydride)有氢化铝锂、硼氢化锂和硼氢化钠。
氢化铝锂的还原能力最强,适用于各种羧酸衍生物的还原;硼氢化锂的还原能力比硼氢化钠略强。酯能被氢化铝锂和硼氢化锂还原为一级醇。
一级酰胺(primary amide,);二级酰胺(secondary amide,
);可被氢化铝锂还原为一级、二级胺:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image127.jpg?sign=1738907819-VsSxFc4Ia4g65NpCbQrFTuu8ggSi0W7Y-0-ea65a3ad5ee4f8588ce1c3414db0b97a)
腈用LiAlH4还原得一级胺:
(3)酯用金属钠还原
①Bouveault—Blanc还原
用金属钠-醇还原酯得一级醇,称为Bouveault—Blanc(鲍维特一勃朗克)还原:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image133.jpg?sign=1738907819-3xUOU2blwhr4eiv14odfBH4M6M6YSI7c-0-692a9b60d957f50b19882694167d8f9d)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image135.jpg?sign=1738907819-c6dEdwN2q2dR3F95F6YaayCMYp4PAykx-0-61cdffdfcd174cf3119b5138e7c8899f)
②酮醇缩合
脂肪酸酯和金属钠在乙醚或甲苯、二甲苯中,在纯氮气流存在下剧烈搅拌和回流,发生双分子还原,得α—羟基酮(也叫酮醇)。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image137.jpg?sign=1738907819-B2D9zaoRbAtwK3Nkn1b4pgiGot6f16ZV-0-46168e43d4d9b636f1c22fc9a077bde7)
4.酰卤的α氢卤代
羧酸的α卤代反应是通过少量酰卤进行的。
在二元羧酸的衍生物只引入一个溴的方法:
(1)将二元羧酸单酯用亚硫酰氯处理,将羧基转为酰氯。
(2)用一分子溴反应,酰氯的α氢原子被溴取代后,通过酰卤的醇解再转变为α一溴代二元酸二酯。
例如α-溴代己二酸二乙酯的合成如下所示:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image139.jpg?sign=1738907819-kmFM0Vs73cuNRqdWVAAaZY5yZaoFoD7E-0-dea39736f47c5621eab9ee3b2a63bd14)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image141.jpg?sign=1738907819-h4BZ2O0ROr2lIVpsgqf3VnOwubVAFIjH-0-cc88e5d44741ecae62858f6bdd5b14c7)
酰卤的α氢比酯的α氢更活泼。
5.酰亚胺的酸性
酰亚胺氮上的氢具有一定的酸性,用pKa值来衡量其酸性的强弱:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image143.jpg?sign=1738907819-TtduWJOJEtdnuEfNnZ7oL2SW8dsVYMRm-0-2703af2fc2ddda80c7caea50f96c6ca8)
(1)与碱发生成盐反应:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image145.jpg?sign=1738907819-9MuaTs6BvFE15MPBxyvuk5KhI3b2cmX1-0-946396e8170044986f07e3cc34123076)
(2)与溴发生取代反应:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image147.jpg?sign=1738907819-qn7DZyaqqsbELsaVmTDnSctWw3eyOejr-0-7978b75d9a5ec11f541e919a760f16e2)
N-溴代丁二酰亚胺是一个重要的溴化试剂,可用于烯类化合物的α位溴代。
6.烯酮的反应
含有结构的化合物称为烯酮(olefine ketone)。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image151.jpg?sign=1738907819-ZwlEMWwAO6kduOwtdNX3BZQF5NHBnTOP-0-d433ac3f06934e2c4aba794698b78357)
烯酮由于含有聚积的双键,化学性质十分活泼:
(1)羰基的加成
①烯酮的两个π键易于打开。加成时,总是氢加在氧上,另一部分加在碳上,生成的烯醇经互变异构就得羧酸衍生物。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image153.jpg?sign=1738907819-oNVR9Au6g8hcQXtQwrWHbZq93PFcRiMv-0-43000181116661ea12d9fa457f90ea0a)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image157.jpg?sign=1738907819-9fU0cCbTFU8pIvwYA3z4YkYGZ5e1QDss-0-200136ec1ce628589864486a86b0ca0f)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image159.jpg?sign=1738907819-eT0IhCSmpmppn5fS4Te9rP8Va0gjgVoz-0-5644e40b21658ea40511956f18c37198)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image161.jpg?sign=1738907819-kZxrKUdAufUI3mhmarGtrDmmW3Lovt7O-0-9ba3ad280c93b74a21e6f86722cc9459)
烯酮是一个很理想的乙酰基化试剂(acetylating agent)。
②烯酮可以和格氏试剂发生反应,生成酮:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image163.jpg?sign=1738907819-w8zb1RYeCFQfLNci4syyzDRO7h7ERqO3-0-1a8a893497e93705361074d46b8cd740)
(2)与甲醛反应 烯酮二聚
烯酮与甲醛反应可形成β—丙内酯(β-propanolactone):
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image165.jpg?sign=1738907819-BKVOldzEG8f2LUD0pwhGRTuYJTLkF38H-0-2d59657c5bf40ac7af6970dba72cb8fd)
①乙烯酮在合适的条件下二聚生成二乙烯酮。加热又重新分解为乙烯酮。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image167.jpg?sign=1738907819-gWCRDKaQZoEvvXgrIhgOgZ4WNosJcOoC-0-0ee9fc498d60d3d152f8999b7f164808)
二乙烯酮
②β-丙内酯在中性、弱酸性介质中,经SN2反应,发生烷氧键断裂生成β取代羧酸。例如:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image169.jpg?sign=1738907819-uYoxpFxWbUO0LSbqvKjNXf25VInWuPtE-0-92c2be40a9437ebc1ad2d652f73b396a)
③在碱性或强酸性介质中,经加成-消除机理,发生酰氧键断裂开环,生成β取代的羧酸衍生物。例如:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image171.jpg?sign=1738907819-ffev8uiDx69HPfcoQ6NGNHgS3RxmFXLH-0-9061d48bb3e1f4c0397458db68d9d872)
④二乙烯酮由于β碳用双键与亚甲基相连,使亲核试剂难于进攻β碳,主要发生酰氧键断裂。例如:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image173.jpg?sign=1738907819-pkxmkj0dbUn657AuagAu2YSseauxwu1V-0-767b6f0cb8407fb35bbe9d8e84579ac9)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image175.jpg?sign=1738907819-eoo5LSXmKggittYqmYBeOPoe4vZdC5fu-0-cb432b95555b89ac979be99be016c049)
产物乙酰乙酸乙酯是有机合成的重要中间体。
(3)光分解反应
烯酮在光作用下,分解产生亚甲基卡宾:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image177.png?sign=1738907819-NuUdGtxzVMXGC89utkbjWruclVhX7VnE-0-a9b237c7fd974e86e2f9246d6d8bf63d)
7.Reformatsky反应
醛或酮与α-溴代酸酯和锌在惰性溶剂中相互作用,得到β-羟基酸酯的反应。
(1-羟环己基)乙酸乙酯
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image181.jpg?sign=1738907819-bLthPw250UrrrcpHNApG2F16oei7HlZm-0-bc5a00d0c5f65b6e5ac4f875f65f8b3b)
2-甲基-3-苯基-3-羟基丙酸乙酯
反应机理为:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image183.jpg?sign=1738907819-2FLkdUnr0vKluRVCo2563gY4WICNJdD7-0-393b3cca1655a0d3dc18adfa272fe1d4)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image185.jpg?sign=1738907819-mHHrVvHTaUsqdO4FW9BMYYBILnGVnQxk-0-2e625b7d04369404234589e376330d54)
反应不能用镁代替锌。
β-羟基酸酯很易失水生成α,β-不饱和酯(α,β-unsaturated ester),如:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image187.jpg?sign=1738907819-rpFQGc77SPwe1C9M93sZBSDAmH9p5cEM-0-307096bd9d0462d2e3264c21b3baaf85)
8.酯的热裂
(1)酯在400~500℃的高温进行裂解,产生烯和相应羧酸的反应称为酯的热裂。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image189.jpg?sign=1738907819-OauUrjC6qNeMGveuBBaX059w4G92wIcl-0-a12f2a66a0789ef74e8925ac817d188b)
反应机理为:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image191.jpg?sign=1738907819-jpVgFOvQkM4soOQNii35M9qSTKBNeT6o-0-99e690e529b21daa6abc21dfd9060d84)
这是一个分子内通过环状过渡态的消除反应,分子的反应构象处于重叠式,被消除的酰氧基与β氢原子是同时离开的,并处于同一侧,故称为顺式消除(ciselimination)。
①如果羧酸酯有两种β氢,可以得到两种消除产物,其中以酸性大、位阻小的β氢被消除为主要产物。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image193.jpg?sign=1738907819-B8zPMCnrrYCXzegKLcZJqMWtxvIiZgeC-0-4b28f2675760eb4de80951fbc9151020)
②如果被消除的β位有两个氢,以E型产物为主要产物。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image195.jpg?sign=1738907819-A0OXveqygsQG1de9U614ofw8uDqmXCZm-0-5304d6ad9dcb274a99e242c816248f97)
③制备末端烯烃(end alkene)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image197.jpg?sign=1738907819-Yueo4lSJRbwdsDNuzyOzssi96l0Jdsen-0-08a2ccfad65b9586edb8d747c9641b98)
④酯热裂是通过一个环状过渡态完成的,不会产生重排产物,用来制备具有环外双键的烯烃。例如:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image199.jpg?sign=1738907819-ePlsFMAjtSmz10zduaihLVxD332iLlha-0-3e707b0884c84909a1323cd4be4d9585)
(2)黄原酸酯的热裂
将黄原酸酯加热到l00~200℃即发生热分解生成烯烃。该反应称为Chugaev(秋加叶夫)反应,例如:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image203.jpg?sign=1738907819-EZjjGY5LmMM9fniArW0v5XvXHyoVVCmf-0-786e866077d694b9e88c05edb3a89db1)
反应机理为:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image205.jpg?sign=1738907819-DaMH2HqwS9WaWmqsbthbJh9ENPNn7k3f-0-8b82ee86c5774b50f851937a0ae9563f)
四、羧酸衍生物的制备
1.酰卤的制备
酰卤是用羧酸和无机酰卤反应来制备的。
(1)酰氯
酰氯最常用的制备方法是用亚硫酰氯(thionyl chloride)、三氯化磷、五氯化磷与羧酸反应而得。如
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image207.jpg?sign=1738907819-omOU6kmiMNxBCElgn89WfQN7Fb1F2TAD-0-dcacb6bc16afac528344b0e95834ee94)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image209.jpg?sign=1738907819-4tHLQmRE06da6c8vaKuz74RtwYZXSmrA-0-be462429efb29517c3046515bd730387)
沸点98~102℃ 沸点200℃
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image211.jpg?sign=1738907819-RVsbixADwPh4grwCuz4OCsNQrErLePEP-0-6a90783aa65145f9aacc597a502d89d5)
沸点l96℃ 沸点107℃
常用的试剂是亚硫酰氯,反应条件温和,在室温或稍加热即可反应。
羧酸与亚硫酰氯反应过程如下所示,氯负离子“内返”形成酰氯。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image213.jpg?sign=1738907819-Xmx8m9YgoxDEFSsInxA88ExjFnWv5cmg-0-d09bcc150345438e60f00cafc3c6c38c)
(2)酰溴常用三溴化磷(沸点l73℃)为卤化试剂来制备。
2.酸酐和烯酮的制备
(1)酸酐的制备
①用干燥的羧酸钠盐与酰氯反应
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image215.jpg?sign=1738907819-Pi01WMLmgcV8WJqoKtnPD81NRodaKpd4-0-fd2e938e334183174141cf983424cc1d)
②羧酸失水
羧酸(除甲酸外)均可失水形成酸酐。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image217.jpg?sign=1738907819-vZJpnkgVVqLDc8Ito20BD5rumCFrgRCj-0-609aaf9639157d0c50321d445af4838b)
苯甲酸酐(苯酐)74%
可制备比乙酸沸点高的酸酐,反应中的乙酸酐实际上是一个去水剂。二元酸通过此法可合成环状酸酐,产物水常用共沸法或真空蒸馏法除去。
五元、六元环状酸酐常用此法制备。例如:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image219.jpg?sign=1738907819-lZJwwLCE8hpz8FXazIozLUW478ohAgBB-0-146a9e55d281823c1a255af356b7b1dd)
③芳烃氧化
苯在高温及V2O5催化下氧化为顺丁烯二酸酐,邻二甲苯可氧化为邻苯二甲酸酐。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image221.jpg?sign=1738907819-I1YVJApyfnaWiNns1kzYn5J7a5Tu08ff-0-6012e12e37b0301092c4be3ced287c30)
邻苯二甲酸酐,75%
④乙酸酐(醋酐)的工业制法
用乙酸与乙烯酮反应来制备:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image223.jpg?sign=1738907819-i9lrZMvky74mji6hhKKQjYo4o3hEuyDi-0-da6a72f7d108a96fd61019dd85a60ad4)
(2)烯酮的制备
①烯酮一般是用α-溴代酰溴和锌粉共热,通过Elcb消除失去两个溴原子后得到的。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image225.jpg?sign=1738907819-pQsZkzsp0CFas6AxDQCn1S8ugPWI4r5K-0-7ea35af872138d95d744cdb5864610be)
②用酰卤在碱的作用下消除卤化氢来制备。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image227.jpg?sign=1738907819-kM6pKDPTTxbQlaXfZhTe1whnVsEQvo6z-0-2a8fe82f9d01dccb069ef35b67ad2902)
③α-重氮羰基化合物经Wolff重排制备烯酮。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image229.jpg?sign=1738907819-nmeJksu3n19SFbC1lvPOkKDZ4ddPY9uV-0-7f14884b6b6562cdb466b5463c8352fb)
④在工业上,乙烯酮通过丙酮或乙酸的热裂(pyrolysis)来制备。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image231.jpg?sign=1738907819-tqAKnhwGRo9XPphWCfsDQ3VWC0jr9zf6-0-ba52ca5f45c1260dab7ba597ec98969c)
热裂反应是按自由基机理进行的。由丙酮裂解制备乙烯酮的机理如下所示:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image233.jpg?sign=1738907819-hQ99JQySYoV06BqdYBHMsCzqeTiKvbrO-0-34d0d48a9aed24cd1c5560be3d05f650)
3.酯的制备
羧酸与重氮甲烷反应可用来制备羧酸甲酯。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image235.png?sign=1738907819-qdp6zWd3LhXhzcIC7UO9i5R0q2LeexLQ-0-20fbfec52d535e8c2b965975bbe7ba1c)
反应机理如下:
羧酸与烯、炔的加成也能用来制备酯,例如:
4.酰胺和腈的制备
(1)酰胺的制备
酰胺可以通过腈的控制水解或铵盐的部分失水来制备:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image241.png?sign=1738907819-QV2R0rpgwX9YZxKCPEDJDg5VD643wzc8-0-289b4399696613b5f4c3540107bf0e04)
(2)腈的制备
①卤代烷与氰化钾(钠)反应制备腈:
RX+NaCNRCN+NaX
②实验室中,酰胺失水制得腈。通常的失水剂是五氧化二磷、三氯氧化磷、亚硫酰氯等。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image249.jpg?sign=1738907819-vStUkjDl9TEUwpnhWdlS2Ej2VP6yAyf7-0-b3280fb52c5fcf1ced682d396d88ddf3)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image251.jpg?sign=1738907819-FlH8wC2qXk1TM3eagYY9R8ahxBAtsGWd-0-a073a71b89e60b6d31caa019579e58f2)
五、油脂 蜡 碳酸的衍生物
1.油脂
油脂的水解亦称为皂化作用:
油脂 十个碳以上的羧酸钠盐
(1)脂肪酸
天然油脂水解后的脂肪酸是各种酸的混合物。饱和酸最多的是C12~C18酸,动物脂肪如猪油及牛油中含有大量软脂酸(palmitic acid)及硬脂酸(stearic acid)。奶油中含有丁酸。
油脂中含有的不饱和酸均大于C10,最重要的是十八个碳原子的酸,分布最广的是油酸(oleic acid),它是橄榄油的主要成分。
(2)脂肪酸和脂肪醇的来源
工业上通过分馏脂肪酸甲酯或乙酯的方法可以得到纯度超过90%的各种脂肪酸。
首先使油脂和甲醇或乙醇进行酯交换反应:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image253.jpg?sign=1738907819-ugsARLOCYodxWMBhQY6LhJ6k7Lx6znLU-0-52de50c9ab3bfbe0094dcb3bec5862bc)
将生成的甲酯或乙酯和甘油进行分馏,然后水解,这样就得到了相当纯净的脂肪酸。
(3)油脂硬化,干性油
①油脂的硬化(fat hardening):不饱和脂肪酸在镍的催化下,氢化到任何一种饱和程度。因为氢化逐步地提高了熔点,该过程称为油脂的硬化。
②干性油(drying oil):当把含有共轭双键脂肪酸的油脂涂布在平面上和空气接触时,就逐渐变为一层干硬而有弹性的膜,因此这种油脂又称为干性油(drying oil)。
(4)肥皂和合成洗涤剂
高级脂肪酸钠盐结构上一头连接亲水基,一头连接疏水基。
除油机理:
①遇到一滴油后,疏水基部分没入油中,亲水基伸没入水中这样油,将肥皂分子包围起来。
②受机械力的震动和摩擦,大的油珠多数分散成细小的油珠,然后再受肥皂分子的包围而分散,不能彼此结合,只能成为极小的油珠悬浮在水中,于是肥皂就呈乳状液。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image255.jpg?sign=1738907819-IlphrwEnre3GZoPnOhPpHxMwhFPHlkVf-0-5491e0053a0c6a422ded4eeb6c97cf08)
目前国内外大量使用合成洗涤剂,这些合成洗涤剂结构有一个共同点,就是均有一个极性的水溶性基团(water—soluble group)和一个非极性的油溶性(oil—soluble)的烃基(C>12)。
(5)磷脂和生物膜(细胞膜)
在动植物体内含有一类和油脂类似的化合物,称为类脂质。在分子中含有磷的叫磷脂(phosphatide),磷脂多为甘油酯,以脑磷脂(cephalin)及卵磷脂(1ecithin)为最重要,其结构为
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image257.jpg?sign=1738907819-OetRplSOgnRS0O9PtP9OkNzDeezNVWpF-0-f088f1b201284c9b240c759e96115eb8)
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image259.jpg?sign=1738907819-N7AqE2t6h5R3A312O9ZmiIv4CiXZdZQv-0-743aab20c2fd11d6c6c97ddab87e089c)
磷脂酰乙醇胺 α-脑磷脂 磷脂酰胆碱 α-卵磷脂
所有生物膜(biomembrane)几乎完全是由蛋白质(protein)和脂类(主要是磷脂)两大类物质组成。
2.蜡
蜡(wax):化学成分是l6个碳以上的偶数碳原子的羧酸和高级一元醇形成的酯。
蜡多为固体,重要的有下列几种:
蜂蜡,熔点60~62℃ 鲸蜡,熔点41~46℃ 巴西蜡,熔点83~90℃
存在于蜂蜜腹部 存在于鲸鱼头部 存在于巴西棕榈叶中
蜡可用于制蜡纸、防水剂、光泽剂等。
3.碳酸的衍生物
从结构上讲,碳酸是一个双羟基化合物,它的水合物称为原碳酸(ortho-carbonic acid)。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image267.jpg?sign=1738907819-SLtE075mbC5uH3daFulQwn0pW9QJnBzk-0-f1120eda359447919f8a28e98de61949)
碳酸 原碳酸
碳酸含有两个可被取代的羧羟基,可以形成单酰氯、单酰胺、单酯,或形成双酰氯、双酰胺、双酯。
保留一个羟基的碳酸的衍生物是不稳定的,很容易分解放出CO2。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image271.jpg?sign=1738907819-fRDOL642WnOen5evjpfzmsGA4KbJdi02-0-9bc0c4ea01359dca99a400f90917b562)
碳酸单乙酯 碳酸单酰胺 碳酸单酰氯
原碳酸含有四个可被取代的羟基,其四氯化合物即是四氯化碳。
(1)光气
碳酸的二酰氯又叫光气(phosgene),有毒。
光气可以由四氯化碳和80%发烟硫酸制备:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image277.png?sign=1738907819-1dNBsyD3SGxNAH6YMgLvisXitUomvd2u-0-2e60919babe9c57b3d11a0647d142dd4)
工业上可以用CO和Cl2在无光下通过活化的碳催化剂制备:
光气在有机合成上是一个重要的试剂,在合成染料中占有重要的位置。
(2)尿素(脲)
尿素(urea)是碳酸的全酰胺,是碳酸的最重要的衍生物。
大量的尿素是用CO2和NH3在压力下制备;
尿素的主要用途是作为肥料。一部分用来制备尿素甲醛树脂,少量的用来制备巴比妥酸(安眠剂):
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image281.jpg?sign=1738907819-FHTiTKaXbSWjpYzcipUhKH99xZJOny6D-0-68171c444d3f7cfeab0cb5d96cd9e285)
尿素的性质:
①尿素是一元碱,符合于上述的两性离子的结构,和酸形成盐:
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image283.jpg?sign=1738907819-jkTxqxm61Nt51rTgL8WNH9UCv7Jxs4ZF-0-b6e3882d39a384de5c6a24d1743fa155)
②尿素和具有一定结构形状的烷烃、醇等能形成结晶化合物。可用于分离某些很难分离的异构体。
③尿素在微微超过于它的熔点之上加热时,分解成氨和氰酸。假若加热不太强烈,有些氰酸和脲缩合,形成二缩脲。硫酸铜和二缩脲反应呈现紫色,可用来鉴定尿素,更可以用来鉴定肽键和蛋白质。
![](https://epubservercos.yuewen.com/F24BA4/15436366104436406/epubprivate/OEBPS/Images/image285.jpg?sign=1738907819-5vEW6anChT8JVKbpJRVDTx5QF8oUMjvK-0-01fa1748cb904aa50f0876e88ad946ff)
二缩脲
④测定脲:脲在尿素酶的作用下,可以分解成CO2和NH3。分解后放出的氨可用 Nessler(奈斯勒)试剂,通过比色法测定。