
会员
AI重塑演讲力:ChatGPT 10倍提升演讲写作与表达
小安老思更新时间:2024-08-06 17:09:46
最新章节:封底开会员,本书免费读 >
本书结合了作者多年演讲表达的培训经验和体系化的课程内容,并在每个知识点和章节中都融合了新的AI提示词方法。不仅能让读者系统地掌握演讲表达的体系化知识,逐步学习如何提出并表达各种问题,还能快速上手AI工具,极大地提高学习演讲表达的效率,助力我们的工作和学习,提升竞争力。
品牌:机械工业出版社
上架时间:2024-06-01 00:00:00
出版社:机械工业出版社
本书数字版权由机械工业出版社提供,并由其授权上海阅文信息技术有限公司制作发行
最新章节
小安老思
主页
最新上架
- 会员
巧用ChatGPT快速搞定数据分析
本书共分为8章,涵盖了从数据分析基础知识、常见的统计学方法到使用ChatGPT进行数据准备、数据清洗、数据特征提取、数据可视化、回归分析与预测建模、分类与聚类分析,以及深度学习和大数据分析等全面的内容。计算机10.7万字 - 会员
人工智能数学基础与Python机器学习实战
本书分为3个部分:第1章和第2章是人工智能的数学基础,主要介绍了机器学习的概念、Python开发环境的搭建、机器学习bibei的数学知识,以及线性代数和概率论的相关知识;第3~12章主要介绍了回归模型、分类模型、聚类模型、半监督模型的建立和相关算法的理论,以及如何使用sklearn具体实现相关算法模型的搭建;第13章介绍了Spark机器学习,笔者认为对于机器学习,不能只限于Python中的skle计算机0字 - 会员
设计深度学习系统
本书主要从软件开发者的角度探讨如何构建和设计深度学习系统。作者首先描述一个典型的深度学习系统的整体,包括其主要组件以及它们之间的连接方式,然后在各个单独的章节中深入探讨这些主要组件。对于具体介绍的章节,会在开始时讨论需求,接着介绍设计原则和示例服务/代码,并评估开源解决方案。通过阅读本书,读者将能够了解深度学习系统的工作原理,以及如何开发每个组件。本书的主要读者对象是想要从事深度学习平台工作或将一计算机18.1万字 - 会员
大模型工程化:AI驱动下的数据体系
大模型在众多领域得到了广泛应用,促进了AI技术的整合和创新。然而,在实际应用过程中,直接将大模型应用于特定行业常常难以达到预期效果。本书详细阐述如何在游戏经营分析场景中利用大模型实现数据体系的建设。本书分为6个部分,共16章。第1部分主要介绍大模型技术的发展与应用,从大模型的发展现状展开,重点介绍大模型与数据体系的相关知识。第2部分主要介绍大模型下的关键基础设施,涵盖湖仓一体引擎、湖仓的关键技术、计算机15.6万字 - 会员
硅基物语·AI大爆炸:ChatGPT→AIGC→GPT-X→AGI进化→魔法时代→人类未来
本书以第一人称视角,讲述AI的来龙去脉,表达AI的技术原理。从历史到未来,跨越百年时空;从理论到实践,解读AI大爆炸;从技术到哲学,穿越多个维度;从语言到绘画,落地实战演练。ChatGPT的诞生,引发了奇点降临,点亮了AGI(通用人工智能),并涉及大模型、深度神经网络、Transformer、AIGC、涌现效应等一系列技术前沿。计算机8.6万字 - 会员
大模型项目实战:Agent开发与应用
这是一本面向初中级读者的Agent学习指南,作者既是资深的AI技术专家,又是经验丰富的项目导师,融合作者亲身实践、培训反馈与官方资源,为Agent使用者和开发者提供了快速上手的实用指导。本书从基础知识、操作和应用开发3个维度循序渐进地讲解Agent实战技巧,分为三篇:基础篇(1~2章):介绍Agent定义、发展历程、常用开源技术、主要组件等基础知识和开发环境的搭建过程。应用篇(3~6章):从通用型计算机7.2万字 - 会员
AI短视频文案写作从入门到精通
本书共分为10章。第1章介绍短视频文案与AIGC;第2章为AIGC工具助力文案选题策划;第3章为短视频标题撰写与优化;第4章为短视频脚本与情节设计;第5章为短视频带货文案写作;第6章为评论区互动文案写作;第7章为段子文案写作;第8章为短视频内容标签化;第9章为短视频营销文案写作;第10章为短视频与AI的有机结合。计算机8.8万字 - 会员
AI爆款文案:巧用AI大模型让文案变现插上翅膀
本书通过对10款人工智能应用的介绍及调试,帮助读者快速掌握人工智能辅助文案变现的方式。本书共10章,分别讲解AI智能创作,AI爆款文案写作工具,人工智能辅助泛流量文案、泛商业文案、私域文案创作,利用人工智能实现文案变现的底层逻辑,以及在今日头条、百家号、小红书、知乎等平台及不同展示形式下进行文案创作的实战案例等。计算机12.2万字 - 会员
Keras深度学习与神经网络
本书从人工智能导论入手,阐述人工智能的发展及现状,重点介绍了机器学习和神经网络基础、反向传播原理、卷积神经网络和循环神经网络等内容。本书内容由浅入深,循序渐进,从神经元和感知机入手,逐步讲解深度学习中神经网络基础、反向传播以及更深层次的卷积神经网络、循环神经网络。本书知识体系完整,内容覆盖面广,介绍了深度学习中常用的模型和算法,助力读者多方位掌握深度学习的相关知识。本书可作为高等院校计算机等相关专计算机11万字